Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Equivalence of Factorized Information Criterion Regularization and the Chinese Restaurant Process Prior (1506.09068v2)

Published 30 Jun 2015 in stat.ML

Abstract: Factorized Information Criterion (FIC) is a recently developed information criterion, based on which a novel model selection methodology, namely Factorized Asymptotic Bayesian (FAB) Inference, has been developed and successfully applied to various hierarchical Bayesian models. The Dirichlet Process (DP) prior, and one of its well known representations, the Chinese Restaurant Process (CRP), derive another line of model selection methods. FIC can be viewed as a prior distribution over the latent variable configurations. Under this view, we prove that when the parameter dimensionality $D_{c}=2$, FIC is equivalent to CRP. We argue that when $D_{c}>2$, FIC avoids an inherent problem of DP/CRP, i.e. the data likelihood will dominate the impact of the prior, and thus the model selection capability will weaken as $D_{c}$ increases. However, FIC overestimates the data likelihood. As a result, FIC may be overly biased towards models with less components. We propose a natural generalization of FIC, which finds a middle ground between CRP and FIC, and may yield more accurate model selection results than FIC.

Summary

We haven't generated a summary for this paper yet.