Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topic2Vec: Learning Distributed Representations of Topics (1506.08422v1)

Published 28 Jun 2015 in cs.CL and cs.LG

Abstract: Latent Dirichlet Allocation (LDA) mining thematic structure of documents plays an important role in nature language processing and machine learning areas. However, the probability distribution from LDA only describes the statistical relationship of occurrences in the corpus and usually in practice, probability is not the best choice for feature representations. Recently, embedding methods have been proposed to represent words and documents by learning essential concepts and representations, such as Word2Vec and Doc2Vec. The embedded representations have shown more effectiveness than LDA-style representations in many tasks. In this paper, we propose the Topic2Vec approach which can learn topic representations in the same semantic vector space with words, as an alternative to probability. The experimental results show that Topic2Vec achieves interesting and meaningful results.

Citations (77)

Summary

We haven't generated a summary for this paper yet.