Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric (1506.07944v2)

Published 26 Jun 2015 in stat.ML

Abstract: Given a family of probability measures in P(X), the space of probability measures on a Hilbert space X, our goal in this paper is to highlight one ore more curves in P(X) that summarize efficiently that family. We propose to study this problem under the optimal transport (Wasserstein) geometry, using curves that are restricted to be geodesic segments under that metric. We show that concepts that play a key role in Euclidean PCA, such as data centering or orthogonality of principal directions, find a natural equivalent in the optimal transport geometry, using Wasserstein means and differential geometry. The implementation of these ideas is, however, computationally challenging. To achieve scalable algorithms that can handle thousands of measures, we propose to use a relaxed definition for geodesics and regularized optimal transport distances. The interest of our approach is demonstrated on images seen either as shapes or color histograms.

Citations (70)

Summary

We haven't generated a summary for this paper yet.