Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Geometric Analysis of Tubular Objects based on Surface Normal Accumulation (1506.06636v2)

Published 22 Jun 2015 in cs.GR

Abstract: This paper proposes a simple and efficient method for the reconstruction and extraction of geometric parameters from 3D tubular objects. Our method constructs an image that accumulates surface normal information, then peaks within this image are located by tracking. Finally, the positions of these are optimized to lie precisely on the tubular shape centerline. This method is very versatile, and is able to process various input data types like full or partial mesh acquired from 3D laser scans, 3D height map or discrete volumetric images. The proposed algorithm is simple to implement, contains few parameters and can be computed in linear time with respect to the number of surface faces. Since the extracted tube centerline is accurate, we are able to decompose the tube into rectilinear parts and torus-like parts. This is done with a new linear time 3D torus detection algorithm, which follows the same principle of a previous work on 2D arc circle recognition. Detailed experiments show the versatility, accuracy and robustness of our new method.

Citations (14)

Summary

We haven't generated a summary for this paper yet.