2000 character limit reached
Approximately bisectrix-orthogonality preserving mappings (1506.06218v1)
Published 20 Jun 2015 in math.FA
Abstract: Regarding the geometry of a real normed space ${\mathcal X}$, we mainly introduce a notion of approximate bisectrix-orthogonality on vectors $x, y \in {\mathcal X}$ as follows: $${x\np{\varepsilon}}_W y \mbox{if and only if} \sqrt{2}\frac{1-\varepsilon}{1+\varepsilon}|x|\,|y|\leq \Big|\,|y|x+|x|y\,\Big|\leq\sqrt{2}\frac{1+\varepsilon}{1-\varepsilon}|x|\,|y|.$$ We study class of linear mappings preserving the approximately bisectrix-orthogonality ${\np{\varepsilon}}_W$. In particular, we show that if $T: {\mathcal X}\to {\mathcal Y}$ is an approximate linear similarity, then $${x\np{\delta}}_W y\Longrightarrow {Tx \np{\theta}}_W Ty \qquad (x, y\in {\mathcal X})$$ for any $\delta\in[0, 1)$ and certain $\theta\geq 0$.