Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximately bisectrix-orthogonality preserving mappings (1506.06218v1)

Published 20 Jun 2015 in math.FA

Abstract: Regarding the geometry of a real normed space ${\mathcal X}$, we mainly introduce a notion of approximate bisectrix-orthogonality on vectors $x, y \in {\mathcal X}$ as follows: $${x\np{\varepsilon}}_W y \mbox{if and only if} \sqrt{2}\frac{1-\varepsilon}{1+\varepsilon}|x|\,|y|\leq \Big|\,|y|x+|x|y\,\Big|\leq\sqrt{2}\frac{1+\varepsilon}{1-\varepsilon}|x|\,|y|.$$ We study class of linear mappings preserving the approximately bisectrix-orthogonality ${\np{\varepsilon}}_W$. In particular, we show that if $T: {\mathcal X}\to {\mathcal Y}$ is an approximate linear similarity, then $${x\np{\delta}}_W y\Longrightarrow {Tx \np{\theta}}_W Ty \qquad (x, y\in {\mathcal X})$$ for any $\delta\in[0, 1)$ and certain $\theta\geq 0$.

Summary

We haven't generated a summary for this paper yet.