Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-parametric Quickest Change Detection for Large Scale Random Matrices (1506.06199v1)

Published 20 Jun 2015 in math.ST, cs.IT, math.IT, stat.ME, and stat.TH

Abstract: The problem of quickest detection of a change in the distribution of a $n\times p$ random matrix based on a sequence of observations having a single unknown change point is considered. The forms of the pre- and post-change distributions of the rows of the matrices are assumed to belong to the family of elliptically contoured densities with sparse dispersion matrices but are otherwise unknown. We propose a non-parametric stopping rule that is based on a novel summary statistic related to k-nearest neighbor correlation between columns of each observed random matrix. In the large scale regime of $p\rightarrow \infty$ and $n$ fixed we show that, among all functions of the proposed summary statistic, the proposed stopping rule is asymptotically optimal under a minimax quickest change detection (QCD) model.

Citations (7)

Summary

We haven't generated a summary for this paper yet.