Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous Estimation of Non-Gaussian Components and their Correlation Structure (1506.05666v2)

Published 18 Jun 2015 in stat.ML

Abstract: The statistical dependencies which independent component analysis (ICA) cannot remove often provide rich information beyond the linear independent components. It would thus be very useful to estimate the dependency structure from data. While such models have been proposed, they usually concentrated on higher-order correlations such as energy (square) correlations. Yet, linear correlations are a most fundamental and informative form of dependency in many real data sets. Linear correlations are usually completely removed by ICA and related methods, so they can only be analyzed by developing new methods which explicitly allow for linearly correlated components. In this paper, we propose a probabilistic model of linear non-Gaussian components which are allowed to have both linear and energy correlations. The precision matrix of the linear components is assumed to be randomly generated by a higher-order process and explicitly parametrized by a parameter matrix. The estimation of the parameter matrix is shown to be particularly simple because using score matching, the objective function is a quadratic form. Using simulations with artificial data, we demonstrate that the proposed method improves identifiability of non-Gaussian components by simultaneously learning their correlation structure. Applications on simulated complex cells with natural image input, as well as spectrograms of natural audio data show that the method finds new kinds of dependencies between the components.

Citations (3)

Summary

We haven't generated a summary for this paper yet.