Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On characterization of Poisson integrals of Schrödinger operators with Morrey traces (1506.05239v3)

Published 17 Jun 2015 in math.AP

Abstract: Let $L$ be a Schr\"odinger operator of the form $L=-\Delta+V$ acting on $L2(\mathbb Rn)$ where the nonnegative potential $V$ belongs to the reverse H\"older class $B_q$ for some $q\geq n.$ In this article we will show that a function $f\in L{2, \lambda}({\mathbb{R}n}), 0<\lambda<n$ is the trace of the solution of ${\mathbb L}u=-u_{tt}+L u=0, u(x,0)= f(x),$ where $u$ satisfies a Carleson type condition \begin{eqnarray*} \sup_{x_B, r_B} r_B{-\lambda}\int_0{r_B}\int_{B(x_B, r_B)} t|\nabla u(x,t)|2 {dx dt} \leq C <\infty. \end{eqnarray*} Its proof heavily relies on investigate the intrinsic relationship between the classical Morrey spaces and the new Campanato spaces $\mathscr{L}_L{2,\lambda}({\mathbb{R}n})$ associated to the operator $L$, i.e. $$\mathscr{L}_L{2,\lambda}(\mathbb{R}n)= {L}{2,\lambda}(\mathbb{R}n). $$ Conversely, this Carleson type condition characterizes all the ${\mathbb L}$-harmonic functions whose traces belong to the space $L{2, \lambda}({\mathbb{R}n})$ for all $ 0<\lambda<n$. This extends the previous results of [FJN, DYZ, JXY].

Summary

We haven't generated a summary for this paper yet.