Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear-Time Sequence Comparison Using Minimal Absent Words & Applications (1506.04917v2)

Published 16 Jun 2015 in cs.DS and cs.FL

Abstract: Sequence comparison is a prerequisite to virtually all comparative genomic analyses. It is often realized by sequence alignment techniques, which are computationally expensive. This has led to increased research into alignment-free techniques, which are based on measures referring to the composition of sequences in terms of their constituent patterns. These measures, such as $q$-gram distance, are usually computed in time linear with respect to the length of the sequences. In this article, we focus on the complementary idea: how two sequences can be efficiently compared based on information that does not occur in the sequences. A word is an {\em absent word} of some sequence if it does not occur in the sequence. An absent word is {\em minimal} if all its proper factors occur in the sequence. Here we present the first linear-time and linear-space algorithm to compare two sequences by considering {\em all} their minimal absent words. In the process, we present results of combinatorial interest, and also extend the proposed techniques to compare circular sequences.

Citations (23)

Summary

We haven't generated a summary for this paper yet.