Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Active Subspaces Efficiently with Gradient Sketching (1506.04190v2)

Published 12 Jun 2015 in math.NA

Abstract: Active subspaces are an emerging set of tools for identifying and exploiting the most important directions in the space of a computer simulation's input parameters; these directions depend on the simulation's quantity of interest, which we treat as a function from inputs to outputs. To identify a function's active subspace, one must compute the eigenpairs of a matrix derived from the function's gradient, which presents challenges when the gradient is not available as a subroutine. We numerically study two methods for estimating the necessary eigenpairs using only linear measurements of the function's gradient. In practice, these measurements can be estimated by finite differences using only two function evaluations, regardless of the dimension of the function's input space.

Summary

We haven't generated a summary for this paper yet.