Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Poisson statistics for matrix ensembles at large temperature (1506.03494v2)

Published 10 Jun 2015 in math.PR

Abstract: In this article, we consider $\beta$-ensembles, i.e. collections of particles with random positions on the real line having joint distribution $$\frac{1}{Z_N(\beta)}|\Delta(\lambda)|\beta e{- \frac{N\beta}{4}\sum_{i=1}N\lambda_i2}d \lambda,$$ in the regime where $\beta\to 0$ as $N\to\infty$. We briefly describe the global regime and then consider the local regime. In the case where $N\beta$ stays bounded, we prove that the local eigenvalue statistics, in the vicinity of any real number, are asymptotically to those of a Poisson point process. In the case where $N\beta\to\infty$, we prove a partial result in this direction.

Summary

We haven't generated a summary for this paper yet.