Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Nonparametric Testing with the Law of the Iterated Logarithm (1506.03486v2)

Published 10 Jun 2015 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: We propose a new algorithmic framework for sequential hypothesis testing with i.i.d. data, which includes A/B testing, nonparametric two-sample testing, and independence testing as special cases. It is novel in several ways: (a) it takes linear time and constant space to compute on the fly, (b) it has the same power guarantee as a non-sequential version of the test with the same computational constraints up to a small factor, and (c) it accesses only as many samples as are required - its stopping time adapts to the unknown difficulty of the problem. All our test statistics are constructed to be zero-mean martingales under the null hypothesis, and the rejection threshold is governed by a uniform non-asymptotic law of the iterated logarithm (LIL). For the case of nonparametric two-sample mean testing, we also provide a finite sample power analysis, and the first non-asymptotic stopping time calculations for this class of problems. We verify our predictions for type I and II errors and stopping times using simulations.

Citations (75)

Summary

We haven't generated a summary for this paper yet.