Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provable Bayesian Inference via Particle Mirror Descent (1506.03101v3)

Published 9 Jun 2015 in cs.LG, stat.CO, and stat.ML

Abstract: Bayesian methods are appealing in their flexibility in modeling complex data and ability in capturing uncertainty in parameters. However, when Bayes' rule does not result in tractable closed-form, most approximate inference algorithms lack either scalability or rigorous guarantees. To tackle this challenge, we propose a simple yet provable algorithm, \emph{Particle Mirror Descent} (PMD), to iteratively approximate the posterior density. PMD is inspired by stochastic functional mirror descent where one descends in the density space using a small batch of data points at each iteration, and by particle filtering where one uses samples to approximate a function. We prove result of the first kind that, with $m$ particles, PMD provides a posterior density estimator that converges in terms of $KL$-divergence to the true posterior in rate $O(1/\sqrt{m})$. We demonstrate competitive empirical performances of PMD compared to several approximate inference algorithms in mixture models, logistic regression, sparse Gaussian processes and latent Dirichlet allocation on large scale datasets.

Citations (69)

Summary

We haven't generated a summary for this paper yet.