Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On stochastic differential equations with arbitrary slow convergence rates for strong approximation (1506.02828v1)

Published 9 Jun 2015 in math.NA and math.PR

Abstract: In the recent article [Hairer, M., Hutzenthaler, M., Jentzen, A., Loss of regularity for Kolmogorov equations, Ann. Probab. 43 (2015), no. 2, 468--527] it has been shown that there exist stochastic differential equations (SDEs) with infinitely often differentiable and globally bounded coefficients such that the Euler scheme converges to the solution in the strong sense but with no polynomial rate. Hairer et al.'s result naturally leads to the question whether this slow convergence phenomenon can be overcome by using a more sophisticated approximation method than the simple Euler scheme. In this article we answer this question to the negative. We prove that there exist SDEs with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion converges in absolute mean to the solution with a polynomial rate. Even worse, we prove that for every arbitrarily slow convergence speed there exist SDEs with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence.

Summary

We haven't generated a summary for this paper yet.