Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet (1506.02509v1)

Published 8 Jun 2015 in cs.LG and cs.CV

Abstract: Deep learning with a convolutional neural network (CNN) has been proved to be very effective in feature extraction and representation of images. For image classification problems, this work aim at finding which classifier is more competitive based on high-level deep features of images. In this report, we have discussed the nearest neighbor, support vector machines and extreme learning machines for image classification under deep convolutional activation feature representation. Specifically, we adopt the benchmark object recognition dataset from multiple sources with domain bias for evaluating different classifiers. The deep features of the object dataset are obtained by a well-trained CNN with five convolutional layers and three fully-connected layers on the challenging ImageNet. Experiments demonstrate that the ELMs outperform SVMs in cross-domain recognition tasks. In particular, state-of-the-art results are obtained by kernel ELM which outperforms SVMs with about 4% of the average accuracy. The features and codes are available in http://www.escience.cn/people/lei/index.html

Citations (52)

Summary

We haven't generated a summary for this paper yet.