Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bad reduction of genus $2$ curves with CM jacobian varieties (1506.02485v1)

Published 8 Jun 2015 in math.NT

Abstract: We show that a genus $2$ curve over a number field whose jacobian has complex multiplication will usually have stable bad reduction at some prime. We prove this by computing the Faltings height of the jacobian in two different ways. First, we use a formula by Colmez and Obus specific to the CM case and valid when the CM field is an abelian extension of the rationals. This formula links the height and the logarithmic derivatives of an $L$-function. The second formula involves a decomposition of the height into local terms based on a hyperelliptic model. We use results of Igusa, Liu, and Saito to show that the contribution at the finite places in our decomposition measures the stable bad reduction of the curve and subconvexity bounds by Michel and Venkatesh together with an equidistribution result of Zhang to handle the infinite places.

Summary

We haven't generated a summary for this paper yet.