Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and uniqueness for backward stochastic differential equations driven by a random measure (1506.02249v1)

Published 7 Jun 2015 in math.PR

Abstract: We study the following backward stochastic differential equation on finite time horizon driven by an integer-valued random measure $\mu$ on $\mathbb R_+\times E$, where $E$ is a Lusin space, with compensator $\nu(dt,dx)=dA_t\,\phi_t(dx)$: [ Y_t = \xi + \int_{(t,T]} f(s,Y_{s-},Z_s(\cdot))\, d A_s - \int_{(t,T]} \int_E Z_s(x) \, (\mu-\nu)(ds,dx),\qquad 0\leq t\leq T. ] The generator $f$ satisfies, as usual, a uniform Lipschitz condition with respect to its last two arguments. In the literature, the existence and uniqueness for the above equation in the present general setting has only been established when $A$ is continuous or deterministic. The general case, i.e. $A$ is a right-continuous nondecreasing predictable process, is addressed in this paper. These results are relevant, for example, in the study of control problems related to Piecewise Deterministic Markov Processes (PDMPs). Indeed, when $\mu$ is the jump measure of a PDMP, then $A$ is predictable (but not deterministic) and discontinuous, with jumps of size equal to 1.

Summary

We haven't generated a summary for this paper yet.