Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Global Linear Convergence Rate Bounds for Douglas-Rachford Splitting (1506.01556v4)

Published 4 Jun 2015 in math.OC

Abstract: Recently, several authors have shown local and global convergence rate results for Douglas-Rachford splitting under strong monotonicity, Lipschitz continuity, and cocoercivity assumptions. Most of these focus on the convex optimization setting. In the more general monotone inclusion setting, Lions and Mercier showed a linear convergence rate bound under the assumption that one of the two operators is strongly monotone and Lipschitz continuous. We show that this bound is not tight, meaning that no problem from the considered class converges exactly with that rate. In this paper, we present tight global linear convergence rate bounds for that class of problems. We also provide tight linear convergence rate bounds under the assumptions that one of the operators is strongly monotone and cocoercive, and that one of the operators is strongly monotone and the other is cocoercive. All our linear convergence results are obtained by proving the stronger property that the Douglas-Rachford operator is contractive.

Summary

We haven't generated a summary for this paper yet.