Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Model for Enhancing Lexical Statistical Machine Translation (SMT) (1506.01171v1)

Published 3 Jun 2015 in cs.CL

Abstract: The interest in statistical machine translation systems increases currently due to political and social events in the world. A proposed Statistical Machine Translation (SMT) based model that can be used to translate a sentence from the source Language (English) to the target language (Arabic) automatically through efficiently incorporating different statistical and NLP models such as LLM, alignment model, phrase based model, reordering model, and translation model. These models are combined to enhance the performance of statistical machine translation (SMT). Many implementation tools have been used in this work such as Moses, Gizaa++, IRSTLM, KenLM, and BLEU. Based on the implementation, evaluation of this model, and comparing the generated translation with other implemented machine translation systems like Google Translate, it was proved that this proposed model has enhanced the results of the statistical machine translation, and forms a reliable and efficient model in this field of research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (2)