Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian quantile regression with approximate likelihood (1506.00834v1)

Published 2 Jun 2015 in math.ST and stat.TH

Abstract: Quantile regression is often used when a comprehensive relationship between a response variable and one or more explanatory variables is desired. The traditional frequentists' approach to quantile regression has been well developed around asymptotic theories and efficient algorithms. However, not much work has been published under the Bayesian framework. One challenging problem for Bayesian quantile regression is that the full likelihood has no parametric forms. In this paper, we propose a Bayesian quantile regression method, the linearly interpolated density (LID) method, which uses a linear interpolation of the quantiles to approximate the likelihood. Unlike most of the existing methods that aim at tackling one quantile at a time, our proposed method estimates the joint posterior distribution of multiple quantiles, leading to higher global efficiency for all quantiles of interest. Markov chain Monte Carlo algorithms are developed to carry out the proposed method. We provide convergence results that justify both the algorithmic convergence and statistical approximations to an integrated-likelihood-based posterior. From the simulation results, we verify that LID has a clear advantage over other existing methods in estimating quantities that relate to two or more quantiles.

Summary

We haven't generated a summary for this paper yet.