Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A read-filtering algorithm for high-throughput marker-gene studies that greatly improves OTU accuracy (1506.00453v1)

Published 1 Jun 2015 in q-bio.QM and q-bio.GN

Abstract: Adequate read filtering is critical when processing high-throughput data in marker-gene-based studies. Sequencing errors can cause the mis-clustering of otherwise similar reads, artificially increasing the number of retrieved Operational Taxonomic Units (OTUs) and therefore leading to the overestimation of microbial diversity. Sequencing errors will also result in OTUs that are not accurate reconstructions of the original biological sequences. Herein we present a novel and sensitive sequence filtering algorithm that minimizes both problems by calculating the exact error-probability distribution of a sequence from its quality scores. In order to validate our method, we quality-filtered thirty-seven publicly available datasets obtained by sequencing mock and environmental microbial communities with the Roche 454, Illumina MiSeq and IonTorrent PGM platforms, and compared our results to those obtained with previous approaches such as the ones included in mothur, QIIME and UPARSE. Our algorithm retained substantially more reads than its predecessors, while resulting in fewer and more accurate OTUs. This improved sensitiveness produced more faithful representations, both quantitatively and qualitatively, of the true microbial diversity present in the studied samples. Furthermore, the method introduced in this work is computationally inexpensive and can be readily applied in conjunction with any existent analysis pipeline.

Summary

We haven't generated a summary for this paper yet.