Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monolingually Derived Phrase Scores for Phrase Based SMT Using Neural Networks Vector Representations (1506.00406v3)

Published 1 Jun 2015 in cs.CL

Abstract: In this paper, we propose two new features for estimating phrase-based machine translation parameters from mainly monolingual data. Our method is based on two recently introduced neural network vector representation models for words and sentences. It is the first time that these models have been used in an end to end phrase-based machine translation system. Scores obtained from our method can recover more than 80% of BLEU loss caused by removing phrase table probabilities. We also show that our features combined with the phrase table probabilities improve the BLEU score by absolute 0.74 points.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (1)