The first nontrivial eigenvalue for a system of $p-$Laplacians with Neumann and Dirichlet boundary conditions (1505.07403v2)
Abstract: We deal with the first eigenvalue for a system of two $p-$Laplacians with Dirichlet and Neumann boundary conditions. If $\Delta_{p}w=\mbox{div}(|\nabla w|{p-2}w)$ stands for the $p-$Laplacian and $\frac{\alpha}{p}+\frac{\beta}{q}=1,$ we consider $$ \begin{cases} -\Delta_pu= \lambda \alpha |u|{\alpha-2} u|v|{\beta} &\text{ in }\Omega,\ -\Delta_q v= \lambda \beta |u|{\alpha}|v|{\beta-2}v &\text{ in }\Omega,\ \end{cases} $$ with mixed boundary conditions $$ u=0, \qquad |\nabla v|{q-2}\dfrac{\partial v}{\partial \nu }=0, \qquad \text{on }\partial \Omega. $$ We show that there is a first non trivial eigenvalue that can be characterized by the variational minimization problem $$ \lambda_{p,q}{\alpha,\beta} = \min \left{\dfrac{\displaystyle\int_{\Omega}\dfrac{|\nabla u|p}{p}\, dx +\int_{\Omega}\dfrac{|\nabla v|q}{q}\, dx} {\displaystyle\int_{\Omega} |u|\alpha|v|{\beta}\, dx} \colon (u,v)\in \mathcal{A}{p,q}{\alpha,\beta}\right}, $$ where $$ \mathcal{A}{p,q}{\alpha,\beta}=\left{(u,v)\in W{1,p}_0(\Omega)\times W{1,q}(\Omega)\colon uv\not\equiv0\text{ and }\int_{\Omega}|u|{\alpha}|v|{\beta-2}v \, dx=0\right}. $$ We also study the limit of $\lambda_{p,q}{\alpha,\beta} $ as $p,q\to \infty$ assuming that $\frac{\alpha}{p} \to \Gamma \in (0,1)$, and $ \frac{q}{p} \to Q \in (0,\infty)$ as $p,q\to \infty.$ We find that this limit problem interpolates between the pure Dirichlet and Neumann cases for a single equation when we take $Q=1$ and the limits $\Gamma \to 1$ and $\Gamma \to 0$.