Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Mining of Cancer via Mutation in Tumor Protein P53 using Quick Propagation Network (1505.06751v1)

Published 20 May 2015 in cs.CE

Abstract: There is multiple databases contain datasets of TP53 gene and its tumor protein P53 which believed to be involved in over 50% of human cancers cases, these databases are rich as datasets covered all mutations caused diseases (cancers), but they haven't efficient mining method can classify and diagnosis mutations patient's then predict the cancer of that patient. This paper proposed a novel mining of cancer via mutations because there is no mining method before offers friendly, effective and flexible predict or diagnosis of cancers via using whole common database of TP53 gene (tumor protein P53) as dataset and selecting a minimum number of fields in training and testing quick propagation algorithm which supporting this miming method. Simulating quick propagation network for the train dataset shows results the Correlation (0.9999), R-squared (0.9998) and mean of Absolute Relative Error (0.0029), while the training for the ALL datasets (train, test and validation dataset) have results the Correlation (0.9993), R-squared (0.9987) and mean of Absolute Relative Error (0.0057).

Citations (5)

Summary

We haven't generated a summary for this paper yet.