Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-dimensional half-integer weight modules over queer Lie superalgebras (1505.06602v1)

Published 25 May 2015 in math.RT

Abstract: We give a new interpretation of representation theory of the finite-dimensional half-integer weight modules over the queer Lie superalgebra $\mathfrak{q}(n)$. It is given in terms of Brundan's work of finite-dimensional integer weight $\mathfrak{q}(n)$-modules by means of Lusztig's canonical basis. Using this viewpoint we compute the characters of the finite-dimensional half-integer weight irreducible modules. For a large class of irreducible modules whose highest weights are of special types (i.e., totally connected or totally disconnected) we derive closed-form character formulas that are reminiscent of Kac-Wakimoto character formula for classical Lie superalgebras.

Summary

We haven't generated a summary for this paper yet.