Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Rank Matrix Recovery from Row-and-Column Affine Measurements (1505.06292v1)

Published 23 May 2015 in cs.LG, cs.IT, math.IT, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: We propose and study a row-and-column affine measurement scheme for low-rank matrix recovery. Each measurement is a linear combination of elements in one row or one column of a matrix $X$. This setting arises naturally in applications from different domains. However, current algorithms developed for standard matrix recovery problems do not perform well in our case, hence the need for developing new algorithms and theory for our problem. We propose a simple algorithm for the problem based on Singular Value Decomposition ($SVD$) and least-squares ($LS$), which we term \alg. We prove that (a simplified version of) our algorithm can recover $X$ exactly with the minimum possible number of measurements in the noiseless case. In the general noisy case, we prove performance guarantees on the reconstruction accuracy under the Frobenius norm. In simulations, our row-and-column design and \alg algorithm show improved speed, and comparable and in some cases better accuracy compared to standard measurements designs and algorithms. Our theoretical and experimental results suggest that the proposed row-and-column affine measurements scheme, together with our recovery algorithm, may provide a powerful framework for affine matrix reconstruction.

Citations (8)

Summary

We haven't generated a summary for this paper yet.