Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bounded-error Quantum Polynomial Time Algorithm for Two Graph Bisection Problems (1505.06284v1)

Published 23 May 2015 in quant-ph, cs.CC, and cs.DS

Abstract: The aim of the paper is to propose a bounded-error quantum polynomial time (BQP) algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $O(m2)$ for a graph with $m$ edges and in the worst case runs in $O(n4)$ for a dense graph with $n$ vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $1-\epsilon$ for small $\epsilon>0$ using a polynomial space resources.

Citations (3)

Summary

We haven't generated a summary for this paper yet.