Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Line operators in theories of class $\mathcal{S}$, quantized moduli space of flat connections, and Toda field theory (1505.05898v1)

Published 21 May 2015 in hep-th

Abstract: Non-perturbative aspects of $\mathcal{N}=2$ supersymmetric gauge theories of class $\mathcal{S}$ are deeply encoded in the algebra of functions on the moduli space $\mathcal{M}\text{flat}$ of flat $SL(N)$-connections on Riemann surfaces. Expectation values of Wilson and 't Hooft line operators are related to holonomies of flat connections, and expectation values of line operators in the low-energy effective theory are related to Fock-Goncharov coordinates on $\mathcal{M}\text{flat}$. Via the decomposition of UV line operators into IR line operators, we determine their noncommutative algebra from the quantization of Fock-Goncharov Laurent polynomials, and find that it coincides with the skein algebra studied in the context of Chern-Simons theory. Another realization of the skein algebra is generated by Verlinde network operators in Toda field theory. Comparing the spectra of these two realizations provides non-trivial support for their equivalence. Our results can be viewed as evidence for the generalization of the AGT correspondence to higher-rank class $\mathcal{S}$ theories.

Summary

We haven't generated a summary for this paper yet.