Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field (1505.05662v1)

Published 21 May 2015 in physics.flu-dyn

Abstract: We investigate the behavior of flows, including turbulent flows, driven by a horizontal body-force and subject to a vertical magnetic field, with the following question in mind: for very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2D, with no dependence along the vertical? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number Rm << 1: we prove that the flow becomes exactly 2D asymptotically in time, regardless of the initial condition and provided the interaction parameter N is larger than a threshold value. We call this property "absolute two-dimensionalization": the attractor of the system is necessarily a (possibly turbulent) 2D flow. We then consider the full-magnetohydrodynamic equations and we prove that, for low enough Rm and large enough N, the flow becomes exactly two-dimensional in the long-time limit provided the initial vertically-dependent perturbations are infinitesimal. We call this phenomenon "linear two-dimensionalization": the (possibly turbulent) 2D flow is an attractor of the dynamics, but it is not necessarily the only attractor of the system. Some 3D attractors may also exist and be attained for strong enough initial 3D perturbations. These results shed some light on the existence of a dissipation anomaly for magnetohydrodynamic flows subject to a strong external magnetic field.

Summary

We haven't generated a summary for this paper yet.