Smooth Fourier multipliers in group algebras via Sobolev dimension (1505.05316v1)
Abstract: We investigate Fourier multipliers with smooth symbols defined over locally compact Hausdorff groups. Our main results in this paper establish new H\"ormander-Mikhlin criteria for spectral and non-spectral multipliers. The key novelties which shape our approach are three. First, we control a broad class of Fourier multipliers by certain maximal operators in noncommutative $L_p$ spaces. This general principle ---exploited in Euclidean harmonic analysis during the last 40 years--- is of independent interest and might admit further applications. Second, we replace the formerly used cocycle dimension by the Sobolev dimension. This is based on a noncommutative form of the Sobolev embedding theory for Markov semigroups initiated by Varopoulos, and yields more flexibility to measure the smoothness of the symbol. Third, we introduce a dual notion of polynomial growth to further exploit our maximal principle for non-spectral Fourier multipliers. The combination of these ingredients yields new $L_p$ estimates for smooth Fourier multipliers in group algebras.