Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable subset selection via GA and information complexity in mixtures of Poisson and negative binomial regression models (1505.05229v1)

Published 20 May 2015 in stat.ML and stat.ME

Abstract: Count data, for example the number of observed cases of a disease in a city, often arise in the fields of healthcare analytics and epidemiology. In this paper, we consider performing regression on multivariate data in which our outcome is a count. Specifically, we derive log-likelihood functions for finite mixtures of regression models involving counts that come from a Poisson distribution, as well as a negative binomial distribution when the counts are significantly overdispersed. Within our proposed modeling framework, we carry out optimal component selection using the information criteria scores AIC, BIC, CAIC, and ICOMP. We demonstrate applications of our approach on simulated data, as well as on a real data set of HIV cases in Tennessee counties from the year 2010. Finally, using a genetic algorithm within our framework, we perform variable subset selection to determine the covariates that are most responsible for categorizing Tennessee counties. This leads to some interesting insights into the traits of counties that have high HIV counts.

Citations (4)

Summary

We haven't generated a summary for this paper yet.