Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expected number of real zeros for random Freud orthogonal polynomials (1505.04762v1)

Published 18 May 2015 in math.PR, math.CA, and math.CV

Abstract: We study the expected number of real zeros for random linear combinations of orthogonal polynomials. It is well known that Kac polynomials, spanned by monomials with i.i.d. Gaussian coefficients, have only $(2/\pi + o(1))\log{n}$ expected real zeros in terms of the degree $n$. On the other hand, if the basis is given by orthonormal polynomials associated to a finite Borel measure with compact support on the real line, then random linear combinations have $n/\sqrt{3} + o(n)$ expected real zeros under mild conditions. We prove that the latter asymptotic relation holds for all random orthogonal polynomials on the real line associated with Freud weights, and give local results on the expected number of real zeros. We also show that the counting measures of properly scaled zeros of random Freud polynomials converge weakly to the ULLMan distribution.

Summary

We haven't generated a summary for this paper yet.