Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localization, delocalization, and topological phase transitions in the one-dimensional split-step quantum walk (1505.04513v2)

Published 18 May 2015 in cond-mat.mes-hall and quant-ph

Abstract: Quantum walks are promising for information processing tasks because on regular graphs they spread quadratically faster than random walks. Static disorder, however, can turn the tables: unlike random walks, quantum walks can suffer Anderson localization, whereby the spread of the walker stays within a finite region even in the infinite time limit. It is therefore important to understand when we can expect a quantum walk to be Anderson localized and when we can expect it to spread to infinity even in the presence of disorder. In this work we analyze the response of a generic one-dimensional quantum walk -- the split-step walk -- to different forms of static disorder. We find that introducing static, symmetry-preserving disorder in the parameters of the walk leads to Anderson localization. In the completely disordered limit, however, a delocalization sets in, and the walk spreads subdiffusively. Using an efficient numerical algorithm, we calculate the bulk topological invariants of the disordered walk, and interpret the disorder-induced Anderson localization and delocalization transitions using these invariants.

Summary

We haven't generated a summary for this paper yet.