Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Identifiability in Blind Deconvolution with Subspace or Sparsity Constraints (1505.03399v1)

Published 13 May 2015 in cs.IT and math.IT

Abstract: Blind deconvolution (BD), the resolution of a signal and a filter given their convolution, arises in many applications. Without further constraints, BD is ill-posed. In practice, subspace or sparsity constraints have been imposed to reduce the search space, and have shown some empirical success. However, existing theoretical analysis on uniqueness in BD is rather limited. As an effort to address the still mysterious question, we derive sufficient conditions under which two vectors can be uniquely identified from their circular convolution, subject to subspace or sparsity constraints. These sufficient conditions provide the first algebraic sample complexities for BD. We first derive a sufficient condition that applies to almost all bases or frames. For blind deconvolution of vectors in $\mathbb{C}n$, with two subspace constraints of dimensions $m_1$ and $m_2$, the required sample complexity is $n\geq m_1m_2$. Then we impose a sub-band structure on one basis, and derive a sufficient condition that involves a relaxed sample complexity $n\geq m_1+m_2-1$, which we show to be optimal. We present the extensions of these results to BD with sparsity constraints or mixed constraints, with the sparsity level replacing the subspace dimension. The cost for the unknown support in this case is an extra factor of 2 in the sample complexity.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube