Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Mackey functors and equivariant algebraic K-theory (II) (1505.03098v2)

Published 12 May 2015 in math.AT, math.CT, and math.KT

Abstract: We study the "higher algebra" of spectral Mackey functors, which the first named author introduced in Part I of this paper. In particular, armed with our new theory of symmetric promonoidal $\infty$-categories and a suitable generalization of the second named author's Day convolution, we endow the $\infty$-category of Mackey functors with a well-behaved symmetric monoidal structure. This makes it possible to speak of spectral Green functors for any operad $O$. We also answer a question of A. Mathew, proving that the algebraic $K$-theory of group actions is lax symmetric monoidal. We also show that the algebraic $K$-theory of derived stacks provides an example. Finally, we give a very short, new proof of the equivariant Barratt-Priddy-Quillen theorem, which states that the algebraic $K$-theory of the category of finite $G$-sets is simply the $G$-equivariant sphere spectrum.

Summary

We haven't generated a summary for this paper yet.