Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Risks in Mobile Dating Apps (1505.02906v1)

Published 12 May 2015 in cs.CY

Abstract: Dating apps for mobile devices, one popular GeoSocial app category, are growing increasingly popular. These apps encourage the sharing of more personal information than conventional social media apps, including continuous location data. However, recent high profile incidents have highlighted the privacy risks inherent in using these apps. In this paper, we present a case study utilizing forensic techniques on nine popular proximity-based dating apps in order to determine the types of data that can be recovered from user devices. We recover a number of data types from these apps that raise concerns about user privacy. For example, we determine that chat messages could be recovered in at least half of the apps examined and, in some cases, the details of any users that had been discovered nearby could also be extracted.

Citations (55)

Summary

We haven't generated a summary for this paper yet.