Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Actions of Ore extensions and growth of polynomial $H$-identities (1505.02893v5)

Published 12 May 2015 in math.RA

Abstract: We show that if $A$ is a finite dimensional associative $H$-module algebra for an arbitrary Hopf algebra $H$, then the proof of the analog of Amitsur's conjecture for $H$-codimensions of $A$ can be reduced to the case when $A$ is $H$-simple. (Here we do not require that the Jacobson radical of $A$ is an $H$-submodule.) As an application, we prove that if $A$ is a finite dimensional associative $H$-module algebra where $H$ is a Hopf algebra $H$ over a field of characteristic $0$ such that $H$ is constructed by an iterated Ore extension of a finite dimensional semisimple Hopf algebra by skew-primitive elements (e.g. $H$ is a Taft algebra), then there exists integer $\mathop{\mathrm{PIexp}}H(A)$. In order to prove this, we study the structure of algebras simple with respect to an action of an Ore extension.

Summary

We haven't generated a summary for this paper yet.