Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Two-Layer Local Constrained Sparse Coding Method for Fine-Grained Visual Categorization (1505.02505v1)

Published 11 May 2015 in cs.CV

Abstract: Fine-grained categories are more difficulty distinguished than generic categories due to the similarity of inter-class and the diversity of intra-class. Therefore, the fine-grained visual categorization (FGVC) is considered as one of challenge problems in computer vision recently. A new feature learning framework, which is based on a two-layer local constrained sparse coding architecture, is proposed in this paper. The two-layer architecture is introduced for learning intermediate-level features, and the local constrained term is applied to guarantee the local smooth of coding coefficients. For extracting more discriminative information, local orientation histograms are the input of sparse coding instead of raw pixels. Moreover, a quick dictionary updating process is derived to further improve the training speed. Two experimental results show that our method achieves 85.29% accuracy on the Oxford 102 flowers dataset and 67.8% accuracy on the CUB-200-2011 bird dataset, and the performance of our framework is highly competitive with existing literatures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Guo Lihua (2 papers)
  2. Guo Chenggan (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.