Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Belief Embedding for Knowledge Base Completion (1505.02433v4)

Published 10 May 2015 in cs.AI

Abstract: This paper contributes a novel embedding model which measures the probability of each belief $\langle h,r,t,m\rangle$ in a large-scale knowledge repository via simultaneously learning distributed representations for entities ($h$ and $t$), relations ($r$), and the words in relation mentions ($m$). It facilitates knowledge completion by means of simple vector operations to discover new beliefs. Given an imperfect belief, we can not only infer the missing entities, predict the unknown relations, but also tell the plausibility of the belief, just leveraging the learnt embeddings of remaining evidences. To demonstrate the scalability and the effectiveness of our model, we conduct experiments on several large-scale repositories which contain millions of beliefs from WordNet, Freebase and NELL, and compare it with other cutting-edge approaches via competing the performances assessed by the tasks of entity inference, relation prediction and triplet classification with respective metrics. Extensive experimental results show that the proposed model outperforms the state-of-the-arts with significant improvements.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Miao Fan (28 papers)
  2. Qiang Zhou (124 papers)
  3. Andrew Abel (7 papers)
  4. Thomas Fang Zheng (36 papers)
  5. Ralph Grishman (5 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.