Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

The Topology of Biological Networks from a Complexity Perspective (1505.02348v4)

Published 10 May 2015 in cs.SI, physics.soc-ph, and q-bio.MN

Abstract: A complexity-theoretic approach to studying biological networks is proposed. A simple graph representation is used where molecules (DNA, RNA, proteins and chemicals) are vertices and relations between them are directed and signed (promotional (+) or inhibitory (-)) edges. Based on this model, the problem of network evolution (NE) is defined formally as an optimization problem and subsequently proven to be fundamentally hard (NP-hard) by means of reduction from the Knapsack problem (KP). Second, for empirical validation, various biological networks of experimentally-validated interactions are compared against randomly generated networks with varying degree distributions. An NE instance is created using a given real or synthetic (random) network. After being reverse-reduced to a KP instance, each NE instance is fed to a KP solver and the average achieved knapsack value-to-weight ratio is recorded from multiple rounds of simulated evolutionary pressure. The results show that biological networks (and synthetic networks of similar degree distribution) achieve the highest ratios at maximal evolutionary pressure and minimal error tolerance conditions. The more distant (in degree distribution) a synthetic network is from biological networks the lower its achieved ratio. The results shed light on how computational intractability has shaped the evolution of biological networks into their current topology.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.