Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicate Abstraction for Linked Data Structures (1505.02298v2)

Published 9 May 2015 in cs.PL

Abstract: We present Alias Refinement Types (ART), a new approach to the verification of correctness properties of linked data structures. While there are many techniques for checking that a heap-manipulating program adheres to its specification, they often require that the programmer annotate the behavior of each procedure, for example, in the form of loop invariants and pre- and post-conditions. Predicate abstraction would be an attractive abstract domain for performing invariant inference, existing techniques are not able to reason about the heap with enough precision to verify functional properties of data structure manipulating programs. In this paper, we propose a technique that lifts predicate abstraction to the heap by factoring the analysis of data structures into two orthogonal components: (1) Alias Types, which reason about the physical shape of heap structures, and (2) Refinement Types, which use simple predicates from an SMT decidable theory to capture the logical or semantic properties of the structures. We prove ART sound by translating types into separation logic assertions, thus translating typing derivations in ART into separation logic proofs. We evaluate ART by implementing a tool that performs type inference for an imperative language, and empirically show, using a suite of data-structure benchmarks, that ART requires only 21% of the annotations needed by other state-of-the-art verification techniques.

Citations (12)

Summary

We haven't generated a summary for this paper yet.