Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fixed-Size Encoding Method for Variable-Length Sequences with its Application to Neural Network Language Models (1505.01504v2)

Published 6 May 2015 in cs.NE, cs.CL, and cs.LG

Abstract: In this paper, we propose the new fixed-size ordinally-forgetting encoding (FOFE) method, which can almost uniquely encode any variable-length sequence of words into a fixed-size representation. FOFE can model the word order in a sequence using a simple ordinally-forgetting mechanism according to the positions of words. In this work, we have applied FOFE to feedforward neural network LLMs (FNN-LMs). Experimental results have shown that without using any recurrent feedbacks, FOFE based FNN-LMs can significantly outperform not only the standard fixed-input FNN-LMs but also the popular RNN-LMs.

Citations (13)

Summary

We haven't generated a summary for this paper yet.