Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Time-Series Motifs (1505.00423v1)

Published 3 May 2015 in cs.AI and cs.LG

Abstract: Motifs are the most repetitive/frequent patterns of a time-series. The discovery of motifs is crucial for practitioners in order to understand and interpret the phenomena occurring in sequential data. Currently, motifs are searched among series sub-sequences, aiming at selecting the most frequently occurring ones. Search-based methods, which try out series sub-sequence as motif candidates, are currently believed to be the best methods in finding the most frequent patterns. However, this paper proposes an entirely new perspective in finding motifs. We demonstrate that searching is non-optimal since the domain of motifs is restricted, and instead we propose a principled optimization approach able to find optimal motifs. We treat the occurrence frequency as a function and time-series motifs as its parameters, therefore we \textit{learn} the optimal motifs that maximize the frequency function. In contrast to searching, our method is able to discover the most repetitive patterns (hence optimal), even in cases where they do not explicitly occur as sub-sequences. Experiments on several real-life time-series datasets show that the motifs found by our method are highly more frequent than the ones found through searching, for exactly the same distance threshold.

Summary

We haven't generated a summary for this paper yet.