Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Sense of Hidden Layer Information in Deep Networks by Learning Hierarchical Targets (1505.00384v2)

Published 3 May 2015 in cs.NE and cs.LG

Abstract: This paper proposes an architecture for deep neural networks with hidden layer branches that learn targets of lower hierarchy than final layer targets. The branches provide a channel for enforcing useful information in hidden layer which helps in attaining better accuracy, both for the final layer and hidden layers. The shared layers modify their weights using the gradients of all cost functions higher than the branching layer. This model provides a flexible inference system with many levels of targets which is modular and can be used efficiently in situations requiring different levels of results according to complexity. This paper applies the idea to a text classification task on 20 Newsgroups data set with two level of hierarchical targets and a comparison is made with training without the use of hidden layer branches.

Summary

We haven't generated a summary for this paper yet.