Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A first-order logic for string diagrams (1505.00343v1)

Published 2 May 2015 in math.CT and cs.LO

Abstract: Equational reasoning with string diagrams provides an intuitive means of proving equations between morphisms in a symmetric monoidal category. This can be extended to proofs of infinite families of equations using a simple graphical syntax called !-box notation. While this does greatly increase the proving power of string diagrams, previous attempts to go beyond equational reasoning have been largely ad hoc, owing to the lack of a suitable logical framework for diagrammatic proofs involving !-boxes. In this paper, we extend equational reasoning with !-boxes to a fully-fledged first order logic called with conjunction, implication, and universal quantification over !-boxes. This logic, called !L, is then rich enough to properly formalise an induction principle for !-boxes. We then build a standard model for !L and give an example proof of a theorem for non-commutative bialgebras using !L, which is unobtainable by equational reasoning alone.

Citations (9)

Summary

We haven't generated a summary for this paper yet.