Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multi-class approach for ranking graph nodes: models and experiments with incomplete data (1504.07766v1)

Published 29 Apr 2015 in math.NA, cs.IR, and physics.soc-ph

Abstract: After the phenomenal success of the PageRank algorithm, many researchers have extended the PageRank approach to ranking graphs with richer structures beside the simple linkage structure. In some scenarios we have to deal with multi-parameters data where each node has additional features and there are relationships between such features. This paper stems from the need of a systematic approach when dealing with multi-parameter data. We propose models and ranking algorithms which can be used with little adjustments for a large variety of networks (bibliographic data, patent data, twitter and social data, healthcare data). In this paper we focus on several aspects which have not been addressed in the literature: (1) we propose different models for ranking multi-parameters data and a class of numerical algorithms for efficiently computing the ranking score of such models, (2) by analyzing the stability and convergence properties of the numerical schemes we tune a fast and stable technique for the ranking problem, (3) we consider the issue of the robustness of our models when data are incomplete. The comparison of the rank on the incomplete data with the rank on the full structure shows that our models compute consistent rankings whose correlation is up to 60% when just 10% of the links of the attributes are maintained suggesting the suitability of our model also when the data are incomplete.

Citations (15)

Summary

We haven't generated a summary for this paper yet.