Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tail Asymptotics for the Extremes of Bivariate Gaussian Random Fields (1504.07717v2)

Published 29 Apr 2015 in math.PR

Abstract: Let ${X(t)= (X_1(t),X_2(t))T,\ t \in \mathbb{R}N}$ be an $\mathbb{R}2$-valued continuous locally stationary Gaussian random field with $\mathbb{E}[X(t)]=\mathbf{0}$. For any compact sets $A_1, A_2 \subset \mathbb{R}N$, precise asymptotic behavior of the excursion probability [ \mathbb{P}\bigg(\max_{s\in A_1} X_1(s)>u,\, \max_{t\in A_2} X_2(t)>u\bigg),\ \ \text{ as }\ u \rightarrow \infty ] is investigated by applying the double sum method. The explicit results depend not only on the smoothness parameters of the coordinate fields $X_1$ and $X_2$, but also on their maximum correlation $\rho$.

Summary

We haven't generated a summary for this paper yet.