Papers
Topics
Authors
Recent
Search
2000 character limit reached

Critical behaviors and universality classes of percolation phase transitions on two-dimensional square lattice

Published 29 Apr 2015 in cond-mat.stat-mech | (1504.07712v1)

Abstract: We have investigated both site and bond percolation on two dimensional lattice under the random rule and the product rule respectively. With the random rule, sites or bonds are added randomly into the lattice. From two candidates picked randomly, the site or bond with the smaller size product of two connected clusters is added when the product rule is taken. Not only the size of the largest cluster but also its size jump are studied to characterize the universality class of percolation. The finite-size scaling forms of giant cluster size and size jump are proposed and used to determine the critical exponents of percolation from Monte Carlo data. It is found that the critical exponents of both size and size jump in random site percolation are equal to that in random bond percolation. With the random rule, site and bond percolation belong to the same universality class. We obtain the critical exponents of the site percolation under the product rule, which are different from that of both random percolation and the bond percolation under the product rule. The universality class of site percolation differs different from that of bond percolation when the product rule is used.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.