Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial Factorization over Finite Fields By Computing Euler-Poincare Characteristics of Drinfeld Modules (1504.07697v2)

Published 29 Apr 2015 in cs.CC, cs.DM, cs.DS, and math.NT

Abstract: We propose and rigorously analyze two randomized algorithms to factor univariate polynomials over finite fields using rank $2$ Drinfeld modules. The first algorithm estimates the degree of an irreducible factor of a polynomial from Euler-Poincare characteristics of random Drinfeld modules. Knowledge of a factor degree allows one to rapidly extract all factors of that degree. As a consequence, the problem of factoring polynomials over finite fields in time nearly linear in the degree is reduced to finding Euler-Poincare characteristics of random Drinfeld modules with high probability. Notably, the worst case complexity of polynomial factorization over finite fields is reduced to the average case complexity of a problem concerning Drinfeld modules. The second algorithm is a random Drinfeld module analogue of Berlekamp's algorithm. During the course of its analysis, we prove a new bound on degree distributions in factorization patterns of polynomials over finite fields in certain short intervals.

Citations (8)

Summary

We haven't generated a summary for this paper yet.