Polynomial Factorization over Finite Fields By Computing Euler-Poincare Characteristics of Drinfeld Modules (1504.07697v2)
Abstract: We propose and rigorously analyze two randomized algorithms to factor univariate polynomials over finite fields using rank $2$ Drinfeld modules. The first algorithm estimates the degree of an irreducible factor of a polynomial from Euler-Poincare characteristics of random Drinfeld modules. Knowledge of a factor degree allows one to rapidly extract all factors of that degree. As a consequence, the problem of factoring polynomials over finite fields in time nearly linear in the degree is reduced to finding Euler-Poincare characteristics of random Drinfeld modules with high probability. Notably, the worst case complexity of polynomial factorization over finite fields is reduced to the average case complexity of a problem concerning Drinfeld modules. The second algorithm is a random Drinfeld module analogue of Berlekamp's algorithm. During the course of its analysis, we prove a new bound on degree distributions in factorization patterns of polynomials over finite fields in certain short intervals.