Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cyclic homology arising from adjunctions (1504.07434v1)

Published 28 Apr 2015 in math.QA and math.CT

Abstract: Given a monad and a comonad, one obtains a distributive law between them from lifts of one through an adjunction for the other. In particular, this yields for any bialgebroid the Yetter-Drinfel'd distributive law between the comonad given by a module coalgebra and the monad given by a comodule algebra. It is this self-dual setting that reproduces the cyclic homology of associative and of Hopf algebras in the monadic framework of Boehm and Stefan. In fact, their approach generates two duplicial objects and morphisms between them which are mutual inverses if and only if the duplicial objects are cyclic. A 2-categorical perspective on the process of twisting coefficients is provided and the role of the two notions of bimonad studied in the literature is clarified.

Summary

We haven't generated a summary for this paper yet.